1
0
Fork 0
universal-calculator/src/projectEuler/question9.hs

131 lines
3.2 KiB
Haskell

import Debug.Trace (trace)
import Graphics.Rendering.Chart.Backend.Cairo
import Graphics.Rendering.Chart.Easy
{-
Special Pythagorean Triplet
Problem 9
A Pythagorean triplet is a set of three natural numbers, `a < b < c`, for which,
`a^2 + b^2 = c^2`.
For example, `3^2 + 4^2 = 9 + 16 = 25 = 5^2`.
There exists exactly one Pythagorean triplet for which `a + b + c = 1000`.
Find the product `abc`.
-}
main :: IO ()
main = do
print answer
print (product answer)
-- head $ [(a,b,c) | a <- [1..limit], b <- [a+1..limit], c <- [limit - a - b], a < b, b < c, a^2 + b^2 == c^2]
answer :: [Integer]
answer = head $
[ [a, b, c] |
a <- [1 .. limit],
b <- [a + 1 .. limit],
c <- [limit - a - b],
b < c,
a ^ 2 + b ^ 2 == c ^ 2]
where limit = 1000
limit = 1000
version1 = [ [a, b, c] |
a <- [1 .. limit],
b <- [a + 1 .. limit],
c <- [limit - a - b],
b < c,
a ^ 2 + b ^ 2 == c ^ 2]
version2 = [ [a, b, c] |
a <- [1 .. limit],
b <- [a + 1 .. limit],
c <- [limit - a - b],
b < c,
a ^ 2 + b ^ 2 == c ^ 2]
solve :: Integer -> [(Integer, Integer, Integer)]
solve x = takeWhile (\(a,b,c) -> a + b + c == 1000) $ primitiveTriplesUnder x
euclid'sFormula :: Num c => (c, c) -> (c, c, c)
euclid'sFormula (m, n) = (a,b,c)
where
a = m^2 - n^2
b = 2*m*n
c = m^2 + n^2
listOfMNs :: Integer -> [(Integer, Integer)]
listOfMNs x =
[ (m,n)
| n <- [2,4..x] -- one of them is even
, m <- [n+1,n+3..x]
, gcd m n == 1 -- coprime
]
listOfMNs' :: Integer -> [(Integer, Integer)]
listOfMNs' x =
[ (m,n)
| n <- [2,4..] -- one of them is even
, m <- [n+1,n+3..]
, gcd m n == 1 -- coprime
, a m n + b m n + c m n <= x
] where
a m n = m^2 - n^2
b m n = 2*m*n
c m n = m^2 + n^2
primitiveTriplesUnder :: Integer -> [(Integer, Integer, Integer)]
primitiveTriplesUnder = map euclid'sFormula . listOfMNs
test :: [(Integer, Integer, Integer)]
test = [ (a,b,c)
| a <- [3..],
b <- take 10 [a+1..],
c <- takeWhile (\c -> a^2 + b^2 <= c^2) [b+1..]
]
ls :: [(Integer, Integer)]
ls = filter (\(m,n) -> gcd m n == 1) $ zip [5,9..] [2,4..]
diags :: Integer -> [(Integer, Integer)]
diags n = [(x,y) | x<-[0..n], y<-[0..n]]
graph :: IO ()
graph = toFile def "test.png" $ do
layout_title .= "Points"
plot (line "points" [ [ (x,y) | (x,y) <- listOfMNs 30] ])
-- main'' = print ans'
ans' :: Integer -> [(Integer, Integer, Integer)]
ans' limit = [(a, b, c)
| a <- [1 .. limit]
, b <- [a + 1 .. limit]
, c <- [limit - a - b]
, b < c
]
{-
- Solution to Project Euler problem 9
- Copyright (c) Project Nayuki. All rights reserved.
-
- https://www.nayuki.io/page/project-euler-solutions
- https://github.com/nayuki/Project-Euler-solutions
-}
-- -- Computers are fast, so we can implement a brute-force search to directly solve the problem.
-- perim = 1000
-- main = putStrLn (show ans)
-- ans = head [a * b * (perim - a - b) | a <- [1..perim], b <- [a+1..perim], isIntegerRightTriangle a b]
-- isIntegerRightTriangle a b = a < b && b < c
-- && a * a + b * b == c * c
-- where c = perim - a - b