Rebase laster some tests
parent
d54b9f9812
commit
ea4d0e8580
|
@ -3,29 +3,17 @@ The Simplest Math Problem No One Can Solve - Collatz Conjecture
|
|||
https://youtu.be/094y1Z2wpJg
|
||||
-}
|
||||
|
||||
import Control.Parallel.Strategies (parMap, rdeepseq, rpar)
|
||||
import Data.Set (fromList)
|
||||
import Debug.Trace (trace)
|
||||
import Data.Set (fromList)
|
||||
import Debug.Trace (trace)
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
let results =
|
||||
parMap rdeepseq f [10^100_000..10^100_000+100] :: [Integer]
|
||||
let results = map f [10^1_000..10^1_000+100] :: [Integer]
|
||||
print (fromList results)
|
||||
-- main = print $ fromList $ dxs
|
||||
-- main = print $ fromList $ take 300 $ map f [2^100_000..]
|
||||
-- fromList [100001,717859]
|
||||
|
||||
-- main = print $ fromList $ take 3 $ map f [2^310997..]
|
||||
-- main = print $ f $ 2^310997 + 2
|
||||
|
||||
lst :: [Integer]
|
||||
lst = take 300 [2^100_000..]
|
||||
|
||||
dxs :: [Integer]
|
||||
dxs = parMap rpar f lst
|
||||
|
||||
|
||||
f :: Integer -> Integer
|
||||
f n = s 1 n
|
||||
where
|
||||
|
@ -71,3 +59,5 @@ cc n = cc' [] n
|
|||
| even n = cc' acc' (n `div` 2)
|
||||
| odd n = cc' acc' (3*n + 1)
|
||||
where acc' = acc <> [n]
|
||||
|
||||
x = map (length . cc) [2^1_000+10..]
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,81 @@
|
|||
= Collatz Chains in Haskell
|
||||
|
||||
== Title header
|
||||
|
||||
This is a literate haskell blog post. You can load and run this code!
|
||||
|
||||
The Simplest Math Problem No One Can Solve - Collatz Conjecture
|
||||
<https://youtu.be/094y1Z2wpJg>
|
||||
|
||||
Why do we want to do this?
|
||||
|
||||
> collatzStep :: Integer -> Integer
|
||||
> collatzStep n
|
||||
> | even n = n `div` 2
|
||||
> | odd n = 3 * n + 1
|
||||
|
||||
With this, we can iterate over it.
|
||||
|
||||
> collatzStep' :: Integer -> Integer
|
||||
> collatzStep' n
|
||||
> | n == 1 = error "done"
|
||||
> | even n = n `div` 2
|
||||
> | odd n = 3 * n + 1
|
||||
|
||||
> result :: [Integer]
|
||||
> result = iterate collatzStep' 5
|
||||
|
||||
|
||||
collatz collect
|
||||
generate the collatz sequence and return it
|
||||
|
||||
> cc :: Integer -> [Integer]
|
||||
> cc n = cc' [] n
|
||||
> where
|
||||
> cc' :: [Integer] -> Integer -> [Integer]
|
||||
> cc' acc n
|
||||
> | n == 1 = acc <> [1]
|
||||
> | n == 0 = acc <> [0]
|
||||
> | n == (-1) = acc <> [-1]
|
||||
> | n == (-5) = acc <> [-5]
|
||||
> | n == (-17) = acc <> [-17]
|
||||
> | even n = cc' acc' (n `div` 2)
|
||||
> | odd n = cc' acc' (3*n + 1)
|
||||
> where acc' = acc <> [n]
|
||||
|
||||
> a :: [Integer]
|
||||
> a = reverse $ cc $ 2^1_000+1
|
||||
|
||||
> b :: [Integer]
|
||||
> b = reverse $ cc $ 2^1_000+2
|
||||
|
||||
> comparingChains :: [Bool]
|
||||
> comparingChains = zipWith (==) a b
|
||||
|
||||
Now if we collect the chain lengths of large numbers we see something slightly horrifying:
|
||||
|
||||
> x = map (length . cc) [2^1_000+10..]
|
||||
|
||||
This prints us the list of lengths of the chain as:
|
||||
[7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7430,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249,7249...]
|
||||
|
||||
λ> cc 13
|
||||
[13,40,20,10,5,16,8,4,2,1]
|
||||
λ> cc 12
|
||||
[12,6,3,10,5,16,8,4,2,1]
|
||||
|
||||
Now this makes sense with small numbers.
|
||||
But I find it weird with large numbers.
|
||||
|
||||
> f :: Integer -> Integer
|
||||
> f n = s 1 n
|
||||
> where
|
||||
> s :: Integer -> Integer -> Integer
|
||||
> s i n
|
||||
> | n == 1 = i
|
||||
> | n == 0 = i
|
||||
> | n == (-1) = i
|
||||
> | n == (-5) = i
|
||||
> | n == (-17) = i
|
||||
> | even n = s (succ i) (n `div` 2)
|
||||
> | odd n = s (succ i) (3 * n + 1)
|
Loading…
Reference in New Issue