Add questions 1-3
parent
d4cf6b25c8
commit
6bee470b8a
|
@ -4,6 +4,8 @@
|
|||
"concat",
|
||||
"coprime",
|
||||
"elems",
|
||||
"Factorisation",
|
||||
"factorise",
|
||||
"foldl"
|
||||
]
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
{-
|
||||
https://projecteuler.net/problem=1
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9.
|
||||
The sum of these multiples is 23.
|
||||
|
||||
Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
-}
|
||||
module Main where
|
||||
|
||||
main :: IO ()
|
||||
main = print ans
|
||||
|
||||
ans :: Integer
|
||||
ans = sum $ allNumbersUnder 1000
|
||||
|
||||
isMultipleOf :: Integral a => a -> a -> Bool
|
||||
isMultipleOf n x = x `rem` n == 0
|
||||
|
||||
all3sUnder :: Integral a => a -> [a]
|
||||
all3sUnder n = filter (isMultipleOf 3) [1..n-1]
|
||||
all5sUnder :: Integral a => a -> [a]
|
||||
all5sUnder n = filter (isMultipleOf 5) [1..n-1]
|
||||
|
||||
allXsUnderN :: Integral a => a -> a -> [a]
|
||||
allXsUnderN x n = filter (isMultipleOf x) [1..n-1]
|
||||
|
||||
allNumbersUnder :: Integral a => a -> [a]
|
||||
allNumbersUnder l = allXsUnderN 3 l <> allXsUnderN 5 l
|
|
@ -0,0 +1,16 @@
|
|||
{-
|
||||
https://projecteuler.net/problem=2
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
|
||||
|
||||
1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...
|
||||
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
|
||||
-}
|
||||
module Main where
|
||||
|
||||
main :: IO ()
|
||||
main = print ans
|
||||
|
||||
ans = sum $ filter even $ takeWhile(< 4_000_000) fibs
|
||||
|
||||
fibs = 1 : 2 : zipWith (+) fibs (tail fibs)
|
|
@ -0,0 +1,34 @@
|
|||
{-
|
||||
https://projecteuler.net/problem=3
|
||||
|
||||
The prime factors of 13195 are 5, 7, 13, and 29.
|
||||
|
||||
What is the largest prime factor of the number 600851475143?
|
||||
-}
|
||||
module Main where
|
||||
|
||||
import Math.NumberTheory.Primes (Prime (unPrime),
|
||||
UniqueFactorisation (factorise),
|
||||
primes)
|
||||
|
||||
main :: IO ()
|
||||
main = print ans
|
||||
|
||||
ans :: Int
|
||||
ans = last $ filter (isFactor bigNum) primes'
|
||||
|
||||
primes' :: [Int]
|
||||
primes' = takeWhile (< sqrt') $ map unPrime primes
|
||||
where
|
||||
sqrt' = floor $ sqrt (toEnum bigNum)
|
||||
|
||||
bigNum :: Int
|
||||
bigNum = 600851475143
|
||||
|
||||
isFactor :: Int -> Int -> Bool
|
||||
isFactor x n = x `rem` n == 0
|
||||
|
||||
ans' :: [Int]
|
||||
ans' = map (unPrime . fst) $ factorise (fromEnum bigNum)
|
||||
-- [(Prime 71,1),(Prime 839,1),(Prime 1471,1),(Prime 6857,1)]
|
||||
-- [71,839,1471,6857]
|
Loading…
Reference in New Issue