Add main functions to any that were missing
parent
6e17fe91f5
commit
683ad67214
|
@ -221,4 +221,6 @@ ans :: [Integer]
|
||||||
ans = take 10 $ reverse . digits $ sum oneHundredFiftyDigitNumbers
|
ans = take 10 $ reverse . digits $ sum oneHundredFiftyDigitNumbers
|
||||||
|
|
||||||
main :: IO ()
|
main :: IO ()
|
||||||
main = print ans
|
main = do
|
||||||
|
print ans
|
||||||
|
print (sum oneHundredFiftyDigitNumbers)
|
||||||
|
|
|
@ -63,3 +63,5 @@ test = map (filter . multipleOf) [1..10]
|
||||||
|
|
||||||
-- lol
|
-- lol
|
||||||
solve = foldl1 lcm [1..20]
|
solve = foldl1 lcm [1..20]
|
||||||
|
|
||||||
|
main = print solve
|
||||||
|
|
|
@ -13,16 +13,29 @@ Find the difference between the sum of the squares
|
||||||
of the first one hundred natural numbers
|
of the first one hundred natural numbers
|
||||||
and the square of the sum.
|
and the square of the sum.
|
||||||
-}
|
-}
|
||||||
upperRange = 100
|
upperRange :: Integer
|
||||||
|
upperRange = 1_000_000
|
||||||
|
|
||||||
|
square :: Num a => a -> a
|
||||||
square n = n^2
|
square n = n^2
|
||||||
|
|
||||||
|
squares :: [Integer]
|
||||||
squares = map square [1..upperRange]
|
squares = map square [1..upperRange]
|
||||||
|
|
||||||
|
sum' :: [Integer] -> Integer
|
||||||
sum' = go 0
|
sum' = go 0
|
||||||
where
|
where
|
||||||
go acc [] = acc
|
go acc [] = acc
|
||||||
go acc (x:xs) = go (acc+x) xs
|
go acc (x:xs) = go (acc+x) xs
|
||||||
|
|
||||||
sumOfSquares = sum' squares
|
sumOfSquares :: Integer
|
||||||
|
sumOfSquares = sum squares
|
||||||
|
|
||||||
squareOfTheSum = (sum [1..upperRange])^2
|
squareOfTheSum :: Integer
|
||||||
|
squareOfTheSum = sum [1..upperRange] ^2
|
||||||
|
|
||||||
|
solution :: Integer
|
||||||
solution = squareOfTheSum - sumOfSquares
|
solution = squareOfTheSum - sumOfSquares
|
||||||
|
|
||||||
|
main :: IO ()
|
||||||
|
main = print solution
|
||||||
|
|
|
@ -1,6 +1,9 @@
|
||||||
-- https://projecteuler.net/problem=7
|
-- https://projecteuler.net/problem=7
|
||||||
-- Find the 10_001 prime number
|
-- Find the 10_001 prime number
|
||||||
|
|
||||||
|
-- import Data.Numbers.Primes (primes)
|
||||||
|
import Math.NumberTheory.Primes (primes)
|
||||||
|
|
||||||
primes1 :: [Integer]
|
primes1 :: [Integer]
|
||||||
primes1 = 2:3:prs
|
primes1 = 2:3:prs
|
||||||
where
|
where
|
||||||
|
@ -30,3 +33,8 @@ primes2 = 2:([3..] `minus` composites)
|
||||||
primes3 = sieve [2..]
|
primes3 = sieve [2..]
|
||||||
where
|
where
|
||||||
sieve (p : xs) = p : sieve [x | x <- xs, x `mod` p > 0]
|
sieve (p : xs) = p : sieve [x | x <- xs, x `mod` p > 0]
|
||||||
|
|
||||||
|
main :: IO ()
|
||||||
|
main = print $ "Arithmoi - Math.NumberTheory.Primes: " <> show ans
|
||||||
|
|
||||||
|
ans = primes !! 10_000_000
|
||||||
|
|
|
@ -28,6 +28,7 @@ What is the value of this product?
|
||||||
module Main where
|
module Main where
|
||||||
|
|
||||||
import Data.Char (ord)
|
import Data.Char (ord)
|
||||||
|
import Data.Foldable (maximumBy)
|
||||||
import Data.List (sort)
|
import Data.List (sort)
|
||||||
import Data.List.Split (splitOn)
|
import Data.List.Split (splitOn)
|
||||||
|
|
||||||
|
@ -46,9 +47,16 @@ digits = go []
|
||||||
main :: IO ()
|
main :: IO ()
|
||||||
main = print ans
|
main = print ans
|
||||||
|
|
||||||
ans :: [[Integer]]
|
ans :: ([Integer], Integer)
|
||||||
ans = (windowsOf 13 . digits) thousandDigitNum
|
ans = (l, p)
|
||||||
-- "9878799272442"
|
where
|
||||||
|
l = maximumBy c $ (windowsOf 13 . digits) thousandDigitNum
|
||||||
|
p = product l
|
||||||
|
c a b
|
||||||
|
| product a > product b = GT
|
||||||
|
| product a < product b = LT
|
||||||
|
| otherwise = EQ
|
||||||
|
-- "([5,5,7,6,6,8,9,6,6,4,8,9,5],23514624000)"
|
||||||
|
|
||||||
-- what dose it mean to have the greatest product in adjacent digits?
|
-- what dose it mean to have the greatest product in adjacent digits?
|
||||||
-- why ask it like that???
|
-- why ask it like that???
|
||||||
|
|
|
@ -17,14 +17,39 @@ Find the product `abc`.
|
||||||
-}
|
-}
|
||||||
|
|
||||||
main :: IO ()
|
main :: IO ()
|
||||||
main = print answer
|
main = do
|
||||||
|
print answer
|
||||||
|
print (product answer)
|
||||||
|
|
||||||
answer :: String
|
-- head $ [(a,b,c) | a <- [1..limit], b <- [a+1..limit], c <- [limit - a - b], a < b, b < c, a^2 + b^2 == c^2]
|
||||||
answer = "I dunno"
|
answer :: [Integer]
|
||||||
|
answer = head $
|
||||||
|
[ [a, b, c] |
|
||||||
|
a <- [1 .. limit],
|
||||||
|
b <- [a + 1 .. limit],
|
||||||
|
c <- [limit - a - b],
|
||||||
|
b < c,
|
||||||
|
a ^ 2 + b ^ 2 == c ^ 2]
|
||||||
|
where limit = 1000
|
||||||
|
|
||||||
|
limit = 1000
|
||||||
|
version1 = [ [a, b, c] |
|
||||||
|
a <- [1 .. limit],
|
||||||
|
b <- [a + 1 .. limit],
|
||||||
|
c <- [limit - a - b],
|
||||||
|
b < c,
|
||||||
|
a ^ 2 + b ^ 2 == c ^ 2]
|
||||||
|
|
||||||
|
version2 = [ [a, b, c] |
|
||||||
|
a <- [1 .. limit],
|
||||||
|
b <- [a + 1 .. limit],
|
||||||
|
c <- [limit - a - b],
|
||||||
|
b < c,
|
||||||
|
a ^ 2 + b ^ 2 == c ^ 2]
|
||||||
|
|
||||||
|
|
||||||
solve :: Integer -> [(Integer, Integer, Integer)]
|
solve :: Integer -> [(Integer, Integer, Integer)]
|
||||||
solve x = takeWhile (\(a,b,c) -> a + b + c <= 1000) $ primitiveTriplesUnder x
|
solve x = takeWhile (\(a,b,c) -> a + b + c == 1000) $ primitiveTriplesUnder x
|
||||||
|
|
||||||
euclid'sFormula :: Num c => (c, c) -> (c, c, c)
|
euclid'sFormula :: Num c => (c, c) -> (c, c, c)
|
||||||
euclid'sFormula (m, n) = (a,b,c)
|
euclid'sFormula (m, n) = (a,b,c)
|
||||||
|
@ -96,10 +121,10 @@ ans' limit = [(a, b, c)
|
||||||
-}
|
-}
|
||||||
|
|
||||||
|
|
||||||
-- Computers are fast, so we can implement a brute-force search to directly solve the problem.
|
-- -- Computers are fast, so we can implement a brute-force search to directly solve the problem.
|
||||||
perim = 1000
|
-- perim = 1000
|
||||||
main = putStrLn (show ans)
|
-- main = putStrLn (show ans)
|
||||||
ans = head [a * b * (perim - a - b) | a <- [1..perim], b <- [a+1..perim], isIntegerRightTriangle a b]
|
-- ans = head [a * b * (perim - a - b) | a <- [1..perim], b <- [a+1..perim], isIntegerRightTriangle a b]
|
||||||
isIntegerRightTriangle a b = a < b && b < c
|
-- isIntegerRightTriangle a b = a < b && b < c
|
||||||
&& a * a + b * b == c * c
|
-- && a * a + b * b == c * c
|
||||||
where c = perim - a - b
|
-- where c = perim - a - b
|
||||||
|
|
Loading…
Reference in New Issue