Implement solution in Haskell as depth-first-search
parent
0c31a2da33
commit
49cd9a9aa8
|
@ -0,0 +1,55 @@
|
||||||
|
import Data.List (genericIndex, genericLength, unfoldr)
|
||||||
|
import qualified Data.Map.Strict as Map
|
||||||
|
import Data.Set (Set)
|
||||||
|
import qualified Data.Set as Set
|
||||||
|
import Data.Traversable (for)
|
||||||
|
import Debug.Trace (trace)
|
||||||
|
{-
|
||||||
|
Keys and Rooms
|
||||||
|
|
||||||
|
Instructions:
|
||||||
|
There are n rooms labelled from 0 to n - 1 and all the rooms are locked except for room 0. Your goal is to visit all the rooms. However, you cannot enter a locked room without having its key.
|
||||||
|
|
||||||
|
When you visit a room, you may find a set of distinct keys in it. Each key has a number on it, denoting which room it unlocks, and you can take all of them with you to unlock the other rooms.
|
||||||
|
|
||||||
|
Given an array rooms where rooms[i] is the set of keys that you can obtain if you visited room i, return true if you can visit all the rooms, or false otherwise.
|
||||||
|
|
||||||
|
Constraints:
|
||||||
|
n == rooms.length
|
||||||
|
2 <= n <= 1000
|
||||||
|
0 <= rooms[i].length <= 1000
|
||||||
|
1 <= sum(rooms[i].length) <= 3000
|
||||||
|
0 <= rooms[i][j] < n
|
||||||
|
All the values of rooms[i] are unique.
|
||||||
|
-}
|
||||||
|
|
||||||
|
input1Rooms :: [[Integer]]
|
||||||
|
input1Rooms = [[1],[2],[3],[]]
|
||||||
|
|
||||||
|
input2Rooms :: [[Integer]]
|
||||||
|
input2Rooms = [[1,3],[3,0,1],[2],[0]]
|
||||||
|
|
||||||
|
main :: IO ()
|
||||||
|
main = do
|
||||||
|
print $ "Example 1 is: " <> show (canVisitAll input1Rooms)
|
||||||
|
print $ "Example 2 is: " <> show (canVisitAll input2Rooms)
|
||||||
|
|
||||||
|
canVisitAll :: [[Integer]] -> Bool
|
||||||
|
canVisitAll rooms = [0..l] == dfs rooms 0 []
|
||||||
|
where
|
||||||
|
l = l' rooms - 1
|
||||||
|
|
||||||
|
dfs :: [[Integer]] -> Integer -> [Integer] -> [Integer]
|
||||||
|
dfs graph current visited =
|
||||||
|
foldl (\visited next ->
|
||||||
|
if next `elem` visited
|
||||||
|
then visited
|
||||||
|
else dfs graph next visited)
|
||||||
|
(visited ++ [current])
|
||||||
|
(graph !!! current)
|
||||||
|
|
||||||
|
l' :: [a] -> Integer
|
||||||
|
l' = genericLength
|
||||||
|
|
||||||
|
(!!!) :: [a] -> Integer -> a
|
||||||
|
(!!!) = genericIndex
|
Loading…
Reference in New Issue