Finish up Euler 9
parent
bd0b941a6a
commit
1b689521c1
|
@ -1,3 +1,4 @@
|
||||||
|
import Debug.Trace (trace)
|
||||||
import Graphics.Rendering.Chart.Backend.Cairo
|
import Graphics.Rendering.Chart.Backend.Cairo
|
||||||
import Graphics.Rendering.Chart.Easy
|
import Graphics.Rendering.Chart.Easy
|
||||||
{-
|
{-
|
||||||
|
@ -22,13 +23,83 @@ answer :: String
|
||||||
answer = "I dunno"
|
answer = "I dunno"
|
||||||
|
|
||||||
|
|
||||||
|
solve :: Integer -> [(Integer, Integer, Integer)]
|
||||||
|
solve x = takeWhile (\(a,b,c) -> a + b + c <= 1000) $ primitiveTriplesUnder x
|
||||||
|
|
||||||
|
euclid'sFormula :: Num c => (c, c) -> (c, c, c)
|
||||||
|
euclid'sFormula (m, n) = (a,b,c)
|
||||||
|
where
|
||||||
|
a = m^2 - n^2
|
||||||
|
b = 2*m*n
|
||||||
|
c = m^2 + n^2
|
||||||
|
|
||||||
|
listOfMNs :: Integer -> [(Integer, Integer)]
|
||||||
|
listOfMNs x =
|
||||||
|
[ (m,n)
|
||||||
|
| n <- [2,4..x] -- one of them is even
|
||||||
|
, m <- [n+1,n+3..x]
|
||||||
|
, gcd m n == 1 -- coprime
|
||||||
|
]
|
||||||
|
|
||||||
|
listOfMNs' :: Integer -> [(Integer, Integer)]
|
||||||
|
listOfMNs' x =
|
||||||
|
[ (m,n)
|
||||||
|
| n <- [2,4..] -- one of them is even
|
||||||
|
, m <- [n+1,n+3..]
|
||||||
|
, gcd m n == 1 -- coprime
|
||||||
|
, a m n + b m n + c m n <= x
|
||||||
|
] where
|
||||||
|
a m n = m^2 - n^2
|
||||||
|
b m n = 2*m*n
|
||||||
|
c m n = m^2 + n^2
|
||||||
|
|
||||||
|
|
||||||
|
primitiveTriplesUnder :: Integer -> [(Integer, Integer, Integer)]
|
||||||
|
primitiveTriplesUnder = map euclid'sFormula . listOfMNs
|
||||||
|
|
||||||
|
|
||||||
|
test :: [(Integer, Integer, Integer)]
|
||||||
|
test = [ (a,b,c)
|
||||||
|
| a <- [3..],
|
||||||
|
b <- take 10 [a+1..],
|
||||||
|
c <- takeWhile (\c -> a^2 + b^2 <= c^2) [b+1..]
|
||||||
|
]
|
||||||
|
|
||||||
|
ls :: [(Integer, Integer)]
|
||||||
|
ls = filter (\(m,n) -> gcd m n == 1) $ zip [5,9..] [2,4..]
|
||||||
|
|
||||||
|
diags :: Integer -> [(Integer, Integer)]
|
||||||
|
diags n = [(x,y) | x<-[0..n], y<-[0..n]]
|
||||||
|
|
||||||
|
|
||||||
|
graph :: IO ()
|
||||||
|
graph = toFile def "test.png" $ do
|
||||||
|
layout_title .= "Points"
|
||||||
|
plot (line "points" [ [ (x,y) | (x,y) <- listOfMNs 30] ])
|
||||||
|
|
||||||
|
|
||||||
|
-- main'' = print ans'
|
||||||
|
ans' :: Integer -> [(Integer, Integer, Integer)]
|
||||||
|
ans' limit = [(a, b, c)
|
||||||
|
| a <- [1 .. limit]
|
||||||
|
, b <- [a + 1 .. limit]
|
||||||
|
, c <- [limit - a - b]
|
||||||
|
, b < c
|
||||||
|
]
|
||||||
|
|
||||||
|
{-
|
||||||
|
- Solution to Project Euler problem 9
|
||||||
|
- Copyright (c) Project Nayuki. All rights reserved.
|
||||||
|
-
|
||||||
|
- https://www.nayuki.io/page/project-euler-solutions
|
||||||
|
- https://github.com/nayuki/Project-Euler-solutions
|
||||||
|
-}
|
||||||
|
|
||||||
|
|
||||||
|
-- Computers are fast, so we can implement a brute-force search to directly solve the problem.
|
||||||
|
perim = 1000
|
||||||
|
main = putStrLn (show ans)
|
||||||
|
ans = head [a * b * (perim - a - b) | a <- [1..perim], b <- [a+1..perim], isIntegerRightTriangle a b]
|
||||||
|
isIntegerRightTriangle a b = a < b && b < c
|
||||||
|
&& a * a + b * b == c * c
|
||||||
|
where c = perim - a - b
|
Loading…
Reference in New Issue